In 2007, UM made a strategic investment in computational science by founding the Center for Computational Science (CCS). It was created to catalyze transdisciplinary research in science and engineering using cutting edge software and hardware and, more importantly, world-class expertise. CCS is organized around eight focus areas:

Physical Sciences and Engineering: Led by Dr. Benjamin Kirtman, this program is designed to support research and development involving oceanic, atmospheric, and climatic issues as well as problems related to fluid dynamics, solid structures, and materials.

Computational Biology and Bioinformatics: This program supports projects involving genomics, biological data management, molecular sequence and structures, marine ecology, biodiversity and population dynamics. Dr. Vance Lemmon is this program’s lead.

Data Mining: This program, headed up by Dr. Mitsunori Ogihara, focuses on developing methods to understand large data sets to include data clustering and association rule mining. This program lends expertise in large-scale nonstatistical data analysis across many disciplines.

Social Systems Informatics: As implied by its name, this program is focused on the interaction within a social construct’s distinct but interacting components using tools such as data mining, storing and processing. Dr. C. Hendricks Brown leads this program.

Visualization: The visualization program aims to develop and improve core technologies for comprehensive computational modeling, simulation, analysis, and visualization of natural and synthetic phenomena. Our researchers are focused on developing visualization tools for GIS, Biomedicine, Epidemiology, and Geophysical applications. Dr. Gecheng Zha is the interim leader for this program.  The group is lead by Alberto Cairo.

Computational Chemistry: The computational chemistry program includes a range of problems at the interface of chemistry, biology, modeling, data mining, electronic structure modeling, dynamics and kinetics. Dr. Stephan C. Schurer is the interim leader for this program.

Software Engineering: Lead by Christopher Mader, the software engineering core provides expertise in software system design, development, integration and implementation. It provides services through two teams, software engineering and project management. Software engineering focuses on delivering technical content while the project management team provides leadership and coordination for systems projects.

High Performance Computing (HPC): Though considered a primary feature of the center, this focus area is at the heart of a university-wide resource with a mission to provide the academic and research community at large with comprehensive HPC resources ranging from hardware infrastructure to expertise in designing and implementing leading edge HPC and advanced storage solutions. The HPC program has special interest in research and development of storage-based systems and processes. Joel Zysman leads this focus area.

All programs report to Dr. Nicholas Tsinoremas, CCS’ founding director, who reports directly to Dr. Thomas LeBlanc, UM provost. It currently supports over 1,200 university users who represent all disciplines noted above as well as communities in music, economics, and finance.

CCS’ focus on data-driven science and engineering has enabled it to work on data services at, not only the campus level, but at the university level as well as within the State of Florida at partner and affiliate locations. The University of Miami has four main campuses and several distant locations, which are served by CCS for data and computing requirements. Many CCS members and associated faculty are already using national CI resources through XSEDE/TeraGrid, along with large-scale computations at NCAR, NOAA/GFDL, DOE/ORNL and NASA.

CCS provides access to several HPC systems (See the following “Facilities” section) and several large data pools that support a diverse set of scientific communities. The center currently operates a four-tier storage infrastructure designed to specifically accommodate data-driven scientific workflows from sensors/instruments to the desktop of the investigators and, as a broader impact, to science-based decision makers. CCS owns and centrally manages required facilities to support a broad user base’s requirements. This centralization of resources gives CCS great flexibility to approach large-scale research projects while still providing computer resources to all university faculty members, their students and group members.


CCS systems are colocated at the Verizon Terremark NAP of the Americas (NOTA or NAP). The NAP Datacenter in Miami (Figure 2) currently features a 750,000 square foot, purpose-built datacenter, Tier IV facility with N+2 14 Megawatt power and cooling infrastructure. The equipment floors start at 32 feet above sea level, roof slope designed to aid in drainage of floodwater in excess of 100-year storm intensity assisted by 18 rooftop drains, architecture designed to withstand a Category 5 hurricane with approximately 19 million pounds of concrete roof ballast, 7 inch thick steel reinforced concrete exterior panels, and the building is outside FEMA 500-year designated flood zone. The NAP uses a dry pipe fire-suppression system to minimize the risk of damage from leaks.

napThe NAP  has a centrally located Command Center manned by 7×24 security and security sensors. In order to connect the UM with the NOTA Datacenter, the University of Miami has invested in a Dense wavelength division multiplexing (DWDM) optical ring for all of its campuses. The CCS HPC resources occupy a discrete, secure wavelength on the ring, which provides a distinct 10 Gigabit HPC network to all UM campuses and facilities.

Given University of Miami’s past experience including several hurricanes and other natural disasters, we anticipate no service interruptions due to facilities issues. The NAP was designed and constructed for resilient operations. UM has gone through several hurricanes, power outages, and other severe weather crises without any loss of power or connectivity to the NAP. The NAP maintains its own generators with a flywheel power crossover system. This insures that power is not interrupted when the switch is made to auxiliary power. The NAP maintains a 2-week fuel supply (at 100% utilization) and is on the primary list for fuel replacement due to its importance as a data serving facility.

In addition to hosting the University of Miami’s computing infrastructure, the NAP of the Americas is home to the US SouthCOM, Amazon, EBay, and several telecommunications companies’ assets. The NAP at Miami hosts 97% of the network traffic between the US and Central/South America. The NAP is also the local access point for FLorida Lambda RAil (FLR), which is gated to I2 to provide full support to the I2 Innovation Platform. The NAP also provides TLD information to the DNS infrastructure and is the local peering point for all networks in the area.

The University of Miami has made the NAP its primary Data Center occupying a very significant footprint on the third floor. Currently all UM-CCS resources, clusters, storage and back up system run from this facility and serves all major campuses of UM.


The Center for Computational Science (CCS) holds offices on all three campuses at the University of Miami:  Miller School of Medicine,  The Rosenstiel School of Marine and Atmospheric Science, and its main operations on the Coral Gables campus. Each office is equipped with a dual processing workstations and essential software applications.  CCS  has three dedicated conference rooms and communication technology to interact with advisors (phone, web- and video conferencing).


High Performance Computing (HPC):

UM maintains one of the largest centralized academic cyber infrastructures in the country with numerous assets.

The HPC team has been in operation for the past five years. Over that time, the core has grown from  zero HPC cyberinfrastructure to a regional high-performance computing environment that currently supports more than 1,200 users, 220 TFlops of computational power, and more than 3 Petabytes of disk storage. The center’s latest system acquisition, an IBM IDataPlex system, has been ranked at number 389 on the November 2012 Top 500 Supercomputer Sites list.

At present, CCS maintains several clusters and application servers:

Pegasus – CentOS 6.5 based batch/interactive compute cluster consisting of:

  • 6,024 cores. IBM IDataPlex/Blade system
  • Diverse operating environments (Intel Xeon, Intel Phi, AMD processors)
  • 19TB of RAM
  • Dedicated graphical nodes (Pegasus-gui)
  • Dedicated data transfer nodes with direct connection to I2 (Aspera, GridFTP, SFTP)
  • 250+ programs, compilers, and libraries

Jabberwocky – CentOS 6.2 based interactive visualization cluster

  • 184 cores
  • 1 TB RAM
  • Graphical access from all nodes
  • Firewalled access to all resources
  • 1 PB+ of storage

Elysium – CentOS 6.2 based secure data processing cluster (HIPAA/IRB compliant)

  • 32 cores
  • 128 GB RAM
  • Separate VLAN
  • Restricted access (MAC authentication/user ACL’s enforced)
  • Full auditing and attestation
  • 500 TB

DAVID (Distributed Access for Visualization and Interaction with Data) Cloud –

  • 32 cores
  • 128 GB RAM
  • CIFS/NFS/FTP/HTTP access
  • 500 TB

Data Storage:

CCS offers an integrated storage environment for both structured (relational) and unstructured (flat file) data. These systems are specifically tuned for CCS’ data type and application requirements, whether they are serial access or highly parallelized. Each investigator or group has access to its own area and can present his or her data through a service-oriented architecture (SOA) model. Researchers can share their data via access control lists (ACLs), which ensure data integrity and security while allowing flexibility for collaboration.

CCS offers structured data services through the most common relational database formats, including: Oracle, MySQL, and PostgreSQL. Investigators and project teams can access their space through SOA and utilize their resources with the support of an integrated backend infrastructure.

The CCS flat file storage environment is built as a multi-tier solution combining high-speed storage with dense high capacity storage in a tiered architecture, all supported by IBM’s GPFS.  Our HPC/Global tier (700TB) is available on all compute nodes.  This storage is designed for massively parallel work and has been clocked at 157,000 IOP/sec and over 20 GB/sec bandwidth.

Our standard tier of storage (2.8 PB) is designed for general-purpose data storage, analysis, and presentation of data to collaborators both within and without the University of Miami.  All tier 2 storage is available from all systems including our visualization cluster.  Several data management tools are available for tier 2 storage including public presentation, long-term archive, deduplication, encryption, and HSM.

Our archival tier of storage (2.5 PB) leverages several platforms for keeping critical data safe.  By using a combination of tape and disk technologies, we are able to reduce restore times significantly while still ensuring data integrity.

HPC Core Expertise:

The HPC team has in-depth experience in various scientific research areas with extensive experience in parallelizing or distributing codes written in Fortran, C, Java, Perl, Python and R. The  team is active in contributing to Open Source software efforts including: R, Python, the Linux Kernel, Torque, Maui, XFS and GFS. The team also specializes in scheduling software (LSF) to optimize the efficiency of the HPC systems and adapt codes to the CCS environment. The HPC core has  expertise in parallelizing code using both MPI and OpenMP depending on the programming paradigm. CCS has contributed several parallelization efforts back to the community in projects such as R, WRF, and HYCOM.

The core specializes in implementing and porting open source codes to CCS’ environment and often contributes changes back to the community. CCS currently supports more than 300 applications and optimized libraries on its computing environment. The core personnel are experts in implementing and designing solutions in the three different variants of Unix. CCS also maintains industry research partnerships with IBM, Schrodinger, Open Eye, and DDN.


HPC users have a complete software suite at their fingertips, including standard scientific libraries and numerous optimized libraries and algorithms tuned for the computing environment. All programs and algorithms are implemented in 64-bit mode in order to address large memory problems, and also offer compatible 32-bit libraries and algorithms. In addition, the LSF grid scheduling process maximizes the efficiency of the computational resources. Increased efficiency translates into the faster execution of programs, which provides researchers faster access to more resources. By utilizing the full suite of LSF tools we are able to provide both batch and interactive workloads while still retaining workload management features.

For more details about our HPC infrastructure, please visit our pages on this website at http://ccs.miami.edu/hpc



CCS’ Computational Biology and Bioinformatics Program (CBBP) was established to conduct research and offer services and training in the management and analysis of biological and medical/health record data. The program’s mission is to spearhead bioinformatics capacity at the University of Miami for all biological and medical applications. This includes data management, data mining, and data analysis capacities. The CBBP aims to achieve this mission through infrastructure, education, and expertise. In particular, CBBP provides an online portal for bioinformatics databases and web tools, and offers a number of data analysis services. CBBP are concomitantly leading educational and training initiatives in bioinformatics analysis, and nourishing these activities with high impact bioinformatics research.

iBIS – UM’s online Bioinformatics Integrated Services portal

iBIS is a bioinformatics portal that includes links to genomic databases, protein structure databases, clinical genetics databases, as well as numerous software tools for the analysis of gene expression, gene regulation, signaling and metabolic pathways, genomics, proteomics, and systems biology. In addition, the portal allows access to a suite of locally available tools and databases that we maintain on CCS’ HPC servers. Access to most components in the portal is freely available to anyone with a University of Miami login name and password. The portal also offers online tutorials for the major databases and web tools, and the CCS Bioinformatics team provides regular training workshops for new users.

Bioinformatics Data Analysis

The team provides data analysis training and expertise at a three levels, consulting, preliminary data generation, and fully collaborative, based on the time and complexity of the service requested. The analyses are undertaken by skilled analysts, and overseen by experienced faculty. The group has been working mostly with microarray data and next generation sequencing data, and the analytical services include, but are not limited to, the following:

• gene expression analysis for transcriptome profiling and/or gene regulatory network building,

• prognostics and/or diagnostic biomarker discovery,

• microRNA target analysis,

• copy number variant analysis, in this context we are testing the few existing algorithms and developing new ones for accurate and unambiguous discovery of copy number variation in the human genome,

• genome or transcriptome assembly from next generation sequencing data, and its visualization,

• SNP functionality analysis,

• other projects include merging or correlating data from various data types for a holistic view of a particular pathway or disease process.

Advanced Data Mining

The Center’s Data Mining Research Group provides advanced data mining expertise and capabilities to further explore high dimensional data. The following are examples of the expertise areas covered by our faculty.

• Classification, which appears essentially in every subject area that involves collection of data of different types, such as disease diagnosis based on clinical and laboratory data. Methods include regression (linear and logistic), artificial neural nets (ANN), k-nearest neighborhood (KNN), support vector machines (SVM), Bayesian networks, decision trees and others.

• Clustering, which is used to partition the input data points into mutually similar groupings, such that data points from different groups are not similar. Methods include KMeans, hierarchical clustering, and self-organizing map (SOM), and are often accompanied by space decomposition methods to offer low dimensional representations of high dimensional data space. Methods of space decomposition include principal component analysis (PCA), independent component analysis (IDA), multidimensional scaling (MDA), Isomap, and manifold learning. Advanced topics in clustering include multifold clustering, graphical models, and semi-supervised clustering.

• Association data mining, which finds frequent combinations of attributes in databases of categorical attributes. The frequent combinations can be then used to develop prediction of categorical values.

• Analysis of sequential data involves mostly biological sequence and includes such diverse topics as extraction of common patterns in genomic sequences for motif discovery, sequence comparison for haplotype analysis, alignment of sequences, and phylogeny reconstruction.

• Text mining, particularly in terms of extracting information from published papers, thus transforming documents to vectors of relatively low dimension to enable the use of data mining methods mentioned above.


The Visualization program conducts both theoretical and applied research in the general areas of Machine Vision and Learning, and specifically in (i) computer vision and image processing, (ii) machine learning, (iii) biomedical image analysis, and (iv) computational biology and neuroscience. The goal is to provide expertise n this area to develop novel fully automated methods that can provide robustness, accuracy and computational efficiency. The program works towards finding better solutions to existing open problems in the above areas, as well as exploring different scientific fields where our research can provide useful interpretation, quantification and modeling.


CCS has a sophisticated cheminformatics and compute infrastructure with a significant level of support from the institution.  CCS facilitates scientific interactions and enables efficient research using informatics and computational approaches.  A variety of departments and centers at the University use high content and high throughout screening approaches – The Miami Project to Cure Paralysis, the Diabetes Research Institute, the Cancer Center, Bascom Palmer Eye Institute, the Dept. of Surgery, the John P. Hussman Institute for Human Genomics.

Cheminformatics and computational chemistry tools – running on HPC Linux cluster and high performance application server

SciTegic Pipeline Pilot – visual work-flow-based programming environment (data pipelining); broad cheminformatics, reporting / visualization, modeling capabilities; integration of applications, databases, algorithms, data

Leadscope Enterprise - integrated cheminformatics data mining and visualization environment; unique chemical perception (~27K custom keys; user extensions); various algorithms, HTS analysis, SAR / R-group analysis, data modeling

ChemAxon tools and applications -cheminformatics software applications and tools; wide variety of cheminformatics functionality

Spotfire -highly interactive visualization and data analysis environment, various statistical algorithms with chemical structure visualization, HTS and SAR analysis

Open Eye ROCS, FRED, OMEGA, EON, etc. implemented on Linux cluster  - suite of powerful applications and tool kits for high-throughput 3D manipulation of chemical structures, modeling of shape, electrostatics, protein-ligand interactions and various other aspects of structure- and ligand-based design; also includes powerful cheminformatics 2D structure tools

Schrodinger Glide, Prime, Macromodel, and various other tools implemented on Linux cluster – powerful state of the art docking, protein modeling and structure prediction tools and visualization

Desmond implemented on Linux Cluster – powerful state of the art explicit solvent molecular dynamics

TIP workgroup - powerful environment for global analysis of protein structures, binding sites, binding interactions; implemented automated homology modeling, binding site prediction, structure and site comparison for amplification of known protein structure space