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Figure 1. A doubling of sequencing output every nine 
months has outpaced and overtaken performance 
improvements within the disk storage and high-
performance computation fields. (Graph credit: S.D. 
Kahn, Science) 

 
 

The biggest challenges of the modern-day world are far from simple. Whether they involve 

chronic disease, climate change or failing economies, these problems, their solutions and the process 

in reaching said solutions are all multi-faceted, with an extremely large array of contributing factors. 

No longer do researchers look at a given health problem only in potential biologic or chemical 

causes. They must consider several layers of genetic and environmental links. Climate change 

questions envelop historic information from a variety of sources and an increasing number of ongoing 

environmental observations to derive complex models of weather and climate patterns. Financial 

market analyses include countless macro influences, but also micro influences that can emanate from 

new, man-made factors including social media and market manipulation. 

Starting with industry, data volume grew and continues to grow exponentially.i Reportedly, Wal-

Mart processes more than one million customer transactions hourly that translate into databases 

estimated at more than 2.5 petabytes.ii In the same issue of The Economist that reported that statistic, 

it also relayed that a 2008 International 

Data Corp study projected approximately 

1,200 exabytes of digital data would be 

generated in 2010.iii In research academic 

institutions, science disciplines such as 

genomics have created our most significant 

“data deluge.” In the 1990s, data set sizes in 

bioinformatics/genomics ranged from 

several to tens of gigabytes. In the past five 

years and with the introduction of new 
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Figure 2. Climate models, remotely sensed data, 
and in situ instrumental/proxy data are expected to 
continue the significant increase that has occurred 
in climate change data. Graph credit: Overpeck et 
al., Science. 

chemistry and instrument technologies a typical Next Generation Sequencing (NGS) instrument 

generates 4+ terabytes of data in a matter of a few days. Full production levels can reach more than 

150 TB/year per instrument (40 weeks x 4 TB). Furthermore, processing these data can produce 

interim sizes of ten times that amount. But, it is also this very instrumentation that exponentially 

accelerates researchers’ ability to study disease causal genes and thus further medical science more 

quickly.  

Climate science, too, revolves around data from instrumental, paleoclimatic, satellite and model-

based sources. And while these data are increasing significantly in quantity and complexity, the 

discipline faces an additional challenge; the high volume of observations and model output is shared 

with an extremely diverse collection of user communities that exhibit a very large spectrum in their 

level of sophistication and that use a very disparate set of tools to interrogate the data. Just one 

example are the increasing number of 

resource managers (not just research 

scientists) who work in fields such as water, 

public lands, health and marine resources 

are accessing this data to make informed 

decisions. As Overstreet et al. point out, 

these “climate data provide the backbone 

for billion-dollar decisions. With this gravity 

comes the responsibility to curate climate 

data and share it more freely, usefully and 

readily than ever before.”iv  

Take for example how multiple climate 

models (order 4-8) are used to make routine seasonal predictions for use by NOAA forecasters. 
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Typically, these models produce 3500TB of data that need to be analyzed “on-the-fly. The problem of 

weather and climate prediction from days-to-decades will necessarily involve heterogeneous 

observational data collected from satellites, ships, planes, buoys, subsurface ocean platforms and 

land-based stations to “initialize” and validate forecasts. Moreover the predictions systems themselves 

will involve complex heterogeneous computational models covering a variety of space and time 

scales, medium (e.g., ocean, atmosphere, land) and physical and biological processes. These state-of-

the-art models will represent at high resolution the coupled ocean-atmosphere-land-cyrosphere 

system and all the dynamical, physical and biological processes relevant on a broad spectrum of time 

scales. Ultimately analyzing the observations and using them to confront the models and forecasts 

represents an enormous data volume challenge that also translates into substantial data accessibility 

and integration issues.  

The volume of data generated is tremendous. For example, in terms of the weather and climate 

modeling systems, Kinter and Taylor estimate the data generated for a single weather or climate 

prediction numerical experiment (e.g., the IPCC climate change simulations) involving O(10) 

modeling groups (the current IPCC experiment, AR5, involves over 20 modeling groups) to be on the 

order of 10 exabytes.αv While online data storage of this magnitude may be available in 2015, it is 

clear that network capacity or bandwidth is not keeping pace with technological advances in data 

storage media or with high performance computing throughput. It is impossible to imagine that any 

                                                
αA rough estimate of data storage needs for a "single experiment" performed with the climate models of the future can 

be made as follows: Such models will have O(102) levels representing the vertical structure in the system and O(108) 
columns, subsampled before saving at a resolution perhaps a factor of 100 lower, or in some cases run only at a lower, O(10 
km), resolution, yielding O(106) saved columns. The models will output O(102) three dimension fields and O(103) two-
dimensional fields, representing the prognostic and diagnostic variables that characterize the physical, chemical and 
biological state of the system. Data will be saved O(103) times per run, whether it is a relatively short weather prediction run 
or a longer climate simulation run – typically, sampled every half hour for weather prediction, four times per day for 
seasonal prediction, and monthly for climate simulation. The model integrations will be instantiated O(101- 102) times to 
represent ensembles that can be used to estimate uncertainty in each of O(102 – 103) cases – e.g., three years of weather 
prediction cases or O(103) choices of uncertain parameter values in climate prediction cases. Thus, O(1010 – 1011) bytes 
will be stored for each of O(103) save times in O(104 – 105) runs per experiment suite, which means the global repository of 
COPES model output data sets will amount to O(1017 – 1019) bytes or O(0.1 to 10) exabytes (1018 bytes) per model per 
suite of experiments for each of O(10) modeling groups worldwide.  
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single data center or repository can serve this data from end-to-end; indeed a distributed approach 

must be adopted and data access, sharing and interrogation must be viewed based on tiered usage 

(See Figure 3). 

Currently, approximately 20 percent of raw satellite data is used directly in weather forecast 

models and for basic research. The relatively low usage rate is a problem that primarily lies in 

translating the raw satellite data into useful information that can be used in models or in scientific 

discovery. This low usage is, in part, a data management problem that will only be exacerbated as 

satellite date volumes grow at exponential rates. The U.S. National Environmental Data and 

Information Service (NESDIS) estimates its satellite data holding increased by a factor of 20 from 

1999-2005 and that by 2015, it will rise to 14,000 TB. In addition to the massive increase in data, 

requests for information are expanding at nearly the same rate. While clearly an important 

component, the solution is not simply bigger and faster computers. Data policies, procedures and 

standards must be developed to ensure that the wide variety of data coming from all sources (not just 

satellites) can be integrated, assessed and be used by a diverse, expanding research community. 

Beyond genomics and climate change, researchers in many, if not all disciplines must consider 

the implications of growing multi-scale interdisciplinary work and the consequences of data derived 

from a plethora of sources, in different formats, on different systems and from different parts of the 

world. Because of this data-centric focus or fourth paradigm of researchvi, researchers cannot afford to 

ignore computational needs. Grants are in jeopardy if researchers fail to show their data management 

planning in protocols and proposals. Research universities are investing more and more in 

multidisciplinary approaches to scientific discovery. 

Our institution, the University of Miami, consequently invested in the ongoing integrity of its 

scientific research by establishing a Center for Computational Science four years ago. In that time, our 

center has collaborated with experts across the University and around the globe, exploiting 
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supercomputers that could perform trillions of calculations per second. To be a relevant part of 

research teams and ensure that scientific advances can proceed in a timely fashion, we have 

developed a four-tiered data management approach. But effective data management must also 

incorporate the perspectives of a wide range of people. Librarians, researchers and data management 

experts must all be at the table, refining these solutions so that data as they even exceed Moore’s Law 

in their growth potential, are effectively managed, so people are aware of available, accessible data, 

and so ownership and responsibility for maintaining data and their integrity become clearer.  

 

Managing data in motion 

 

The immediate challenges faced by any research informatics organization are those associated 

with simply storing and moving the ever-increasing volumes of data produced by the modern 

scientific discovery process. We have progressed beyond the point where upgrading individual parts 

of the data management ecosystem is enough. Now systems and informatics architects need to 

evaluate their entire operations and look holistically at data and user needs.  

At the University of Miami, we currently operate eight NGS instruments that help researchers 

identify genes that carry a heightened risk for autism, study the oncogenesis for viral-associated 

cancers, genetically dissect viruses for future vaccine development, and conduct other work that 

explores genetic connections to chronic diseases. Already we plan to double the number of NGS 

equipment in the next few years. These instruments are located in specialized wet lab facilities, far 

removed (relatively speaking) from the University Data Center. Like most places, we use Ethernet 

networks for data movement. Given the location of the instruments and the size of data needing to be 

transferred, we were forced to reengineer not only our campus network, but also our inter-campus 

backbone as well to accommodate data transfer and the network service interruption during the daily 

moves of these massive data. A Dense Wavelength Division Multiplexing (DWDM) ring between 
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campuses offered fast, simple, and dynamic provisioning of network connections for the high-

bandwidth services we needed, so we are now able to assign 10Gb wavelengths for different needs. 

We have isolated the Lab and HPC/Research networks from the rest of the university’s traffic to 

minimize the impact in all directions. But campus networks are only a part of the equation. Serious 

thought needs to be given to the architecture of the Local Area Network (LAN) as well. Many 

functional data operations share common traits. Identifying the needs of the consumers of these data 

and identifying the common features can help optimize a network design for data movement and 

availability. The traditional hub and spoke design of most data centers may need to shift to other 

paradigms, such as top-of-rack switches and multiple network access points for different servers. 

Server connections themselves are another area that needs to be analyzed. While Gigabit Ethernet is 

now ubiquitous in research facilities, the adoption of a 10GbE (and higher) needs to be analyzed not 

only at the edge, but within LANs as well. 

But computational centers face other technical challenges when storing and processing this data. 

Data analysis and capacity planning now need to be centered on data consumers, the motion of data, 

and the utility derived from the data for, say decision support; rather than just size alone. That said, 

data size is obviously still formidable. Instead of dealing with file-systems ranging in the terabyte 

range, we must now manage data stores occupying petabytes of space, with hundreds if not 

thousands of clients (and often from significantly varying locations) needing access at any point in 

time. 

In Science’s special issue on data, Kahn discusses the challenge of storing and working with data, 

using the example of the 1000 Genomes Project (www.1000genomes.org), noting that despite the 

data’s cloud storage, downloads even at a well-connected North American location can range 

between 7 and >20 days.vii 
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A Tiered Approach 

 

One way we have addressed this issue is to look at how data are used within different 

analysis/modeling and production pipelines. After observing that a core data set from observation or 

experimentation may undergo many transformations during its “lifecycle,” we determined that taking 

a multi-tiered approach to storage would deliver the best price/performance compromise. Prior to 

archiving, data’s movement can vary in its level of activity, which gives us an opportunity to 

reconsider storage possibilities, to make movement more efficient when data are most active and 

minimize storage demands and costs when they are less active. We recognized that the system must 

be flexible so data were not imprisoned by its storage, and at all times, data must be secured both 

physically and logically. Consequently, we implemented and recommend a tiered structure as 

follows: 

 

Figure 3 

Tier 1 High-speed storage designed for pure processing and highly parallel data 
manipulation (Data in motion) 

Tier 2 Mid-range storage designed for data presentation and mid-range parallel data 
manipulation (Data in motion) 

Tier 3 Deep storage designed for long-term storage, presentation of data, and single-
thread data manipulation (Data still in motion) 

Archive Near-line or off-line storage of past data (Data at rest, not really at rest but 
rather not accessed as frequently) 

 

As can be seen from Figure 3 most data until archived are considered in motion and can move 

easily between all three layers. Data within the archive component can still be moved to faster tiers 

but with higher latency than motion between the other tiers. The size of each tier needs to be 

customized at each facility, but we have found that the ratio between tiers occurs roughly at an order 

of magnitude between them. Having data pools of this size requires new patterns of design in file-

systems and archive solutions. We have utilized different forms of parallel file-systems for Tiers 1-3 

(depending on data patterns and access requirements) and traditional archive methods for archive 
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storage. But with increasing archive sizes, new approaches will be needed as that size nears multi-

petabyte ranges and even higher in the future. 

Data in motion means that data exist in a number of states from their generation to their eventual 

archiving. Normally, the scientific data life cycle can be described in the following process: 

• Data acquisition 

• Management and storage 

• Processing/modeling 

• Post-processing analysis and data mining 

• Integration 

• Decision support and knowledge generation and preservation 

• Archiving   
 

How these data are treated during these various stages is often different. Information and 

knowledge of how the data are understood and used is critically important. There is often a large 

difference in the nature of these data during developmental stages. Following the NGS genomics 

example, the 4-5 terabytes of raw data produced by a single experiment need to go though an intense 

pipeline of several dozen steps including multiple quality assurance/quality control processes, 

assembly of all data, mapping them on to a given genome, to be able to call and understand the 

differences at the nucleotide level (polymorphism) and to conduct studies at the population level. 

In climate science, a newly emerging project known as the National Multi-Model Ensemble 

(NMME) has shown that thinking in terms of one central data storage center, too, no longer meets the 

needs of today's data sets because of their enormity and their broad spectrum of uses. NMME is an 

effort to cull six major climate modeling efforts in response to a U.S. National Academies 

recommendation for a U.S. national approach to intraseasonal, seasonal and interannual climate 

prediction. The sharing or distributing of both real-time forecasts and the retrospective or historical 

forecasts to develop decision support application tools clearly has required a networked or distributed 

approach, sophisticated sub-setting tools and on-demand processing and visualization. While this 
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approach may not be transparent to users because they must visit multiple distribution sites, acquire 

inhomogeneous data that lacks sufficient standards and uniformity for easy use in application models, 

its need is well recognized, and leveragable software and hardware tools (e.g., THREADS servers) are 

evolving. Likewise, as DOIs are increasingly used to identify and document data sets, we develop an 

archive that is searchable and usable and quite possibly an archive best suited for maintenance via 

academic and other research libraries. 

Another important issue has to do with how long to maintain data from validity, usefulness, and 

economic points of view. Also, who is to decide this is an important question that will need to be 

reviewed periodically? For example, with many climate model simulations the data have a relatively 

short shelf life, whereas climate observations need to be preserved for generations. With NGS, too, 

we work closely with research personnel to determine what data are primary to retain and further 

analyze. This type of definition is absolutely critical from both a technological and financial 

perspective. From a technological perspective, the correct storage architecture must accommodate 

the processing needs of this data while in motion. From a financial perspective, defining a minimum 

acceptable performance profile is critical to make sure that the right cost storage is used in the right 

case. In our case, using the Tier definitions in Figure 3 have enabled us to stage the data to the 

appropriate levels. We support roughly 300TB Tier-1 storage, which costs roughly $2,000/TB, so it is 

important to use this space wisely. By staging data to Tier-2 storage, which costs roughly $600 - 

$700/TB, we can keep far more data online for researchers at a much more reasonable cost. By 

extending this to Tier-3 ($300/TB) we can keep data sets online much longer than we could by using 

only one tier. Given the latest efforts by NIH and NSF to implement consistent data management 

plans and programs across all grants, keeping data online and usable for as long as possible will be 

very important. It is critical for systems architects to work not only with research personnel but also 

with IT administration to look for long-term solutions within existing IT strategies. 
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How technologies and their costs evolve will impact the data preservation strategy. At some point 

generation costs vs. storage costs may shift for even very large data sets and produce changes in 

preservation strategies. At the University of Miami, for example, our high performance NAS servers 

present data to our different computational clusters. High-performance storage is defined in this case 

as being able to provide in excess of 100,000 I/OPs, and 40Gb/sec of bandwidth. This performance is 

required so data files can be read and written to by over 1,500 simultaneous cluster nodes at any 

given time. In addition, high-performance storage (primarily SAN storage) also is used for large 

RDBMS, requiring applications, especially when thousands of transactions and queries must occur 

simultaneously. 

Once the primary analysis of data has taken place, the data sets are moved from the high-

performance file-systems to lower performing ones. We do this for technical reason as well as 

financial. Tier 2 infrastructure is designed specifically for secondary analysis and ease-of-user access. 

This access can be provided by several mechanisms, depending on organizational standards. We use 

CIFS for remote access to the data from clients of all types (Linux, Windows, MacOS X). Researchers 

are able to perform different forms of secondary analysis this way. The data can also be presented to 

web sites and informatics applications using protocols like WebDAV, SFTP as well as CIFS. 

Once a project or data set is no longer being actively developed, but still needs to be “viewed” 

and occasionally analyzed, we move it to Tier 3 storage, which has a lower performance profile than 

Tier 2. While Tier 3 does not have the performance profiles of the faster gear, it is remarkably dense. 

This allows us to store, search and even visualize large data sets more economically than that of the 

other tiers. Access controls at this level are extremely fine grained. At this tier we utilize parallel file-

systems across commodity hardware. While parallel file-systems are typically used for distributed 

access to data, we use them for redundancy and scalability, as well as for fine-grained access control. 

At the end of the day, the data’s value is clearly in its productive use. Data access requires careful 
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consideration at the earliest stages of designing data management architecture, and planning for 

flexibility to accommodate a broad base of uses is key. 

What’s used to analyze the data is as important as how it’s stored. Commodity clusters are now 

used at most sites because they have become easy to install and operate. However, design is still 

often neglected. The traditional design of commodity clusters (and in fact supercomputers) has 

focused on numbers of cores and Floating Point Operations per Second (FLOPS). This design trend is 

slowly starting to move to a more balanced approach with I/O being recognized as a high priority 

along with processing. However, this trend needs to be adopted more widely so that data processing 

can keep up with the data deluge. While most vendors are happy to provide statistics about 

processing, few have gone as far with I/O operations. As customers of these vendors, we need to be 

cognizant that clusters and supercomputers can no longer be viewed in isolation but as a normal part 

of the data lifecycle. In fact, simply buying more and larger network storage systems is not the 

answer. Network/interconnect speeds have not kept pace with the tsunami of data. Tiering data offers 

important flexibility and efficiency so that research and discovery can continue in a timely fashion.  

The final piece to a data intense computational ecosystem is the consideration of the physical 

data center to house the equipment. Data centers need to be designed and priced to accommodate 

the advanced technologies required for data processing and presentation. Some aspects to be 

considered are: 

Colocation Facilities: Unless data center design and operations are a core competency at an 
institution, collocation should be considered. 

Power requirements: Due to the compact nature and scale, this equipment is power hungry. 
Modern facilities should be equipped to handle much higher densities of equipment. Power 
ranges of up to 20kw per rack are common for solutions. 

Cooling: Hand in hand with power requirements are cooling. Airflow studies in data centers are 
critical to maintaining equipment. Local airflow using liquid cooling options (doors, CPUs, etc.) 
is becoming more popular. 

Connectivity: Connectivity is critical to any data-intensive operation. Data must be presented to 
many clients (both computer and human), which necessitates high speed redundant access to 

Figure 4 
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Data ownership and responsibility 

 

If you believe that the world is polarized into two groups – those who own “mode of production” 

and those who use said “mode”– then it should come as no surprise that data ownership is complex 

and a subject of much debate. The fourth paradigm is rooted in data production, which is the driving 

force in modern science. 

Data in motion, in particular, create layers of responsibility for data security and ownership. Who 

is responsible for what? Who has rights to access and use data produced in different parts of 

discovery? Data collections often have multiple individuals or groups involved in acquisition, 

generation, organization, curation, interpretation and use of these collections. Assembly of these 

collections may take place over time spans that can range from days to years to generations and 

possibly longer. How to “manage” these data with respect to these diverse interests and over these 

time spans presents complex challenges including technical, interpretive, legal, ethical, and economic 

considerations at the very least. 

The most formidable challenges are likely to be organizational. What are the appropriate roles of 

central organizations including individual and teams of scientists, disciplinary societies, universities, 

libraries, government and private laboratories, for managing these data? Where should lines of 

responsibility be drawn? Any comprehensive organization-wide approach will almost certainly require 

a substantial commitment of institutional funds to establish both required governance and technical 

infrastructure to address these management issues in a thorough fashion. 

Returning to the NGS genomics example, it’s very likely that any sequencing group would be 

operated as a core facility, and would centrally process samples from different departments within the 

systems. 
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same organization as well as, possibly, samples from external collaborating organizations. In the case 

of clinical samples (e.g., tissue samples from patients) being used for research purposes, a whole set of 

regulatory requirements (HIPAA and others) must be adhered to when handling these data. Patients 

must consent to the use of their samples for research purposes and also be able to rescind consent at 

anytime, requiring the removal of their data from any future or ongoing studies. Any study involving 

patients will require a study protocol to be approved by an Institutional Review Board (IRB). This 

protocol must list who is allowed to see and use the data, as well as for what purpose.  

Robert Shelton makes the case that informed consent, if done properly and efficiently via 

electronic means, can “enhance patient participation in research, expand access to data and 

biological samples, reduce the costs and time associated with the recruitment of patients for clinical 

trials, and accelerate the discovery of new treatments.”viii However, privacy considerations can pose 

important challenges for researchers and limit how they manage the data. 

If the protocol is amended, investigators and key personnel may be added or removed. All of this 

information needs to be effectively communicated between the governing organizations, the 

investigators and the research informatics groups. Derivative data sets must be tracked and secured, 

and appropriate access privileges updated and maintained for the life of these data sets. From a purely 

technical perspective it is certainly possible to secure the data. However, to truly meet combined 

regulatory and research requirements it is essential that the organizations conducting the research 

have the requisite governance structure and policies to meet these requirements effectively. To do this, 

the management structure design and organizational polices should be developed in close 

collaboration with research informatics organizations who will be required to help enforce these 

policies. 

In August 2010, The New York Times’ Gina Kolata reported on the “success” of collaborative 

Alzheimer’s disease research with the National Institutes of Health, FDA, academia, industry and 
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nonprofit organizations, where data ownership was somewhat blurred. “The key to the Alzheimer’s 

project was an agreement as ambitious as its goal: not just to raise money, not just to do research on a 

vast scale, but also to share all the data, making every single finding public immediately, available to 

anyone with a computer anywhere in the world,” she wrote. “No one would own the data. No one 

would submit patent applications though private companies would ultimately profit from any drugs or 

imaging tests developed as a result of the effort.”ix And while it’s not clear how the data was managed 

in this instance, it is indicative of the way researchers are trying to come to terms with ownership 

issues and data sharing in an assortment of ways.  

Additionally, in health care science, researchers are exploring trial participant data ownership, 

which can raise as many questions as it addresses, as one looks to resolve storage and management 

issues. Terry and Terry explore the benefits of crowdsourcing opportunities as a result of this take on 

data ownership and how it can expand the opportunity for findings beyond traditional research as well 

as dispense with normal HIPAA considerations.x However, the question remains of how and who will 

manage the data. 

It is very clear that these issues are extremely complex and challenging for any organization. It 

requires developing policies and a common understanding to best accommodate such critical needs. 

It also requires dialog with multiple Institutional organizations across groups such as academic 

departments, administrative organizations, compliance organizations, IT and, of course, investigators. 

 

From Data to Knowledge 

 

Restricting access to data to only those scientists directly engaged in a research project limits the 
scope of legitimate scientific enquiry and the potential for research to influence policy and practice. 
No individual scientist who collects or collates data has all the possible analytic methods, expertise 
and time to extract key public health messages from research or routine data sets. 

– Alan Lopez, School of Population Health, University of Queensland, Australiaxi 

 

Ultimately, the goal must be to enable the ubiquitous use of data from any part of the collection, 
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gathered or generated at any point in time, to be made available to researchers to discover new 

knowledge while still observing all regulatory and security requirements. Today’s underlying 

assumption toward effective scientific research is that data sharing increases understanding, impact 

and usefulness. 

The generation and organization of data sets by researchers working in discipline specific, or even 

interdisciplinary studies often cannot imagine how these data might be used in the future, especially 

by researchers in remote fields of study. Researchers in these remote fields may not be aware of the 

existence of data well known in the “generating” field, and may be completely unaware of the 

applicability of these data to the study at hand. 

Additionally, as researchers, we are so focused on our own goals that we overlook the 

opportunity to add perspective. Computer scientists raise and address issues in an academic vacuum, 

meeting at symposia most often with other computer scientists. Researchers tend only to discuss data 

sharing issues with others in their field. Librarians, who likely hold the ideal curator’s perspective, are 

often an afterthought as we explore how to manage this data deluge of today and plan for the future in 

a way that improves research capability. 

Making an entire collection visible in a meaningful way, while still respecting all relevant security 

requirements, will require developing new software tools. These tools will very likely incorporate 

semantic, text and data mining, and computational linguistics technologies (e.g., Natural Language 

Processing) to build easily searchable and accessible catalogs and indices of these collections. For 

example, a “Smart Collaborator Tool” might be developed that could “understand” the study at hand 

and discover data previously generated by research studies in other fields that should be considered as 

informative by the current study. Indeed, currently funded projects are developing underlying 

technologies to create these tools, but fortunately for those of us interested in this subject, much 

interesting work remains to apply these technologies and produce novel systems to help optimize 
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using collections as resources for the ongoing discovery of knowledge. 

 

Conclusion 

As Jim Gray noted in The Fourth Paradigm and in many of his speaking engagements, data being 

captured 24/7 complemented by new world computer models are likely to reside forever “in a live, 

substantially publicly accessible, curated state for the purposes of continued analysis.”xii Comparing it 

to paper-based storage, its access to anyone who can bring insight to the data has the potential to 

exponentially advance science and other data-driven fields. 

We put forward the notion that in addition to the unprecedented increase in data volume in 

science and engineering, we also must consider the constant data movement required to extract 

information and ultimately knowledge. In summary, this paper presents a number of issues for 

consideration, but those are just a subset of the complex set of interrelated challenges of an integrated 

data management system. There will naturally be multiple approaches to meeting these challenges, yet 

it is more than worthwhile to produce examples of best practices as they emerge.  
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